9 research outputs found

    Formal extension of the relational model for the management of spatial and spatio-temporal data

    Get PDF
    [Resumen] En los últioms años, se ha realizado un gran esfuerzo investigador en la manipulación de datos especiales y Sistemas de Información Geográfica (SIG). Una clara limitación de las primeras aproximaciones es la falta de integración entre datos geográficos y alfanuméricos. Para resolver esto surge el área de Bases de Datos Espaciales. Los problemas que aparecen en este campo son muchos y complejos. Un primer ejemplo son las peculiaridades de las operaciones espaciales, como el calculo de la intersección espacial de dos superficies. Otro ejemplo es el elegir las estructuras de datos apropiadas (relaciones, capas, etc.) y el conjunto de operaciones adeucado. La combinación con las Bases de Datos Temporales da lugar a las Bases de Datos Espacio-temporales, en las que la inclusión de la dimensión temporal complica más los problemas anteriores. A pesar de la gran cantidad de aproximaciones propuestas, no se ha llegado todavía a una solución satisfactoria. La presente tesis propone una nueva solución que resuelve todos los problemas de modelado de datos espaciales y espacio-temporales resaltados arriba. Parte del trabajo se completó durante el proyecto ""CHOROCRONOS"": A Research Network for Saptiotemporal Database Systems"", financiado por la Unión Europea. El modelo propuesto en la tesis define tres tipos de dato punto, línea y superficie, que encajan perfectamente en la percepción humana. La definición de estos tipos de dato se basa en la definición previa de Quanta Espacial. Las estructuras de datos usadas son las relaciones no anidadas de modelo relacional puro. El conjunto de operaciones relacionales permite alcanzar casi por completo la funcionalidad propuesta en otros modelos. Todas las operaciones han sido definidas en base a un núcleo reducido de operaciones primitvas. Todos los tipos de datos, espaciales, espacio-temporales y convencionales se manipulan de forma uniforme con este conjunto de operaciones

    Smart Environmental Data Infrastructures: Bridging the Gap between Earth Sciences and Citizens

    Get PDF
    The monitoring and forecasting of environmental conditions is a task to which much effort and resources are devoted by the scientific community and relevant authorities. Representative examples arise in meteorology, oceanography, and environmental engineering. As a consequence, high volumes of data are generated, which include data generated by earth observation systems and different kinds of models. Specific data models, formats, vocabularies and data access infrastructures have been developed and are currently being used by the scientific community. Due to this, discovering, accessing and analyzing environmental datasets requires very specific skills, which is an important barrier for their reuse in many other application domains. This paper reviews earth science data representation and access standards and technologies, and identifies the main challenges to overcome in order to enable their integration in semantic open data infrastructures. This would allow non-scientific information technology practitioners to devise new end-user solutions for citizen problems in new application domainsThis research was co-funded by (i) the TRAFAIR project (2017-EU-IA-0167), co-financed by the Connecting Europe Facility of the European Union, (ii) the RADAR-ON-RAIA project (0461_RADAR_ON_RAIA_1_E) co-financed by the European Regional Development Fund (ERDF) through the Iterreg V-A Spain-Portugal program (POCTEP) 2014-2020, and (iii) the Consellería de Educación, Universidade e Formación Profesional of the regional government of Galicia (Spain), through the support for research groups with growth potential (ED431B 2018/28)S

    Efficient access methods for very large distributed graph databases

    Get PDF
    Subgraph searching is an essential problem in graph databases, but it is also challenging due to the involved subgraph isomorphism NP-Complete sub-problem. Filter-Then-Verify (FTV) methods mitigate performance overheads by using an index to prune out graphs that do not fit the query in a filtering stage, reducing the number of subgraph isomorphism evaluations in a subsequent verification stage. Subgraph searching has to be applied to very large databases (tens of millions of graphs) in real applications such as molecular substructure searching. Previous surveys have identified the FTV solutions GraphGrepSX (GGSX) and CT-Index as the best ones for large databases (thousands of graphs), however they cannot reach reasonable performance on very large ones (tens of millions graphs). This paper proposes a generic approach for the distributed implementation of FTV solutions. Besides, three previous methods that improve the performance of GGSX and CT-Index are adapted to be executed in clusters. The evaluation shows how the achieved solutions provide a great performance improvement (between 70% and 90% of filtering time reduction) in a centralized configuration and how they may be used to achieve efficient subgraph searching over very large databases in cluster configurationsThis work has been co-funded by the Ministerio de Economía y Competitividad of the Spanish government, and by Mestrelab Research S.L. through the project NEXTCHROM (RTC-2015-3812-2) of the call Retos-Colaboración of the program Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad. The authors wish to thank the financial support provided by Xunta de Galicia under the Project ED431B 2018/28S

    A New Calibration Process for a Homogeneous Cyclorama Illumination in Virtual TV Sets

    Get PDF
    A virtual TV set combines actors and objects with computer-generated virtual environments in real time. Nowadays, this technology is widely used in television broadcasts and cinema productions. A virtual TV set consists of three main elements: the stage, the computer-system and the chroma-keyer. The stage is composed by a monochrome cyclorama (the background) in front of which actors and objects are located (the foreground). The computer-system generates the virtual elements that will form the virtual environment. The chroma-keyer combines the elements in the foreground with the computer-generated environments by erasing the monochrome background and insetting the synthetic elements using the chroma-keying technique. In order to ease the background removal, the cyclorama illumination must be diffuse and homogeneous, avoiding the hue differences that are introduced by shadows, shines and over-lighted areas. The analysis of this illumination is usually performed manually by an expert using a photometer which makes the process slow, tedious and dependent on the experience of the operator. In this paper, a new calibration process to check and improve the homogeneity of a cyclorama’s illumination by non-experts using a custom software which provides both visual information and statistical data, is presented. This calibration process segments a cyclorama image in regions with similar luminance and calculates the centroid of each of them. The statistical study of the variation in the size of the regions and the position of the centroids are the key tools used to determine the homogeneity of the cyclorama lighting.This work has received financial support from the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016–2019, ED431G/08) and the European Regional Development Fund (ERDF)S

    Radar on RAIA: High frequency radars in the RAIA Observatory

    Get PDF
    The RADAR ON RAIA project aims to update and extend beyond the Galician border the High Frequency (HF) radar network that has been operating since 2011 in the framework of the RAIA Observatory. The Project is allowing the establishment of a cross-border collaboration beyond the physical infrastructure itself, developing a sharing strategy of maintenance procedures, validation and data processing on both sides of the border, as well as an easy and public access to all the information. In addition, new products are being developed to exploit the potential of the HF radar technology.Peer Reviewe

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    GeoSPARQL query support for scientific raster array data

    Get PDF
    This paper presents the design of a GeoSPARQL query processing solution for scientific raster array data, called GeoLD. The solution enables the implementation of SPARQL endpoints on top of OGC standard Web Coverage Processing Services (WCPS). Thus, the semantic querying of scientific raster data is supported without the need of specific raster array functions in the language. To achieve this, first Coverage to RDF mapping solutions were defined, based on the well-known W3C standard mappings for relational data. Next, the SPARQL algebra is extended with a new operator that delegates part of the GeoSPARQL query in WCPS services. Query optimization replaces those parts of the SPARQL query plan that may be delegated to a WCPS service by instances of such new WCPS operator. A first prototype has been implemented by extending the ARQ SPARQL query engine of Apache Jena. Petascope was used as the WCPS implementation on top of the Rasdaman raster array database. An initial evaluation with real meteorological data shows, as it was initially expected, that the approach outperforms an existing reference relational database based GeoSPARQL implementationThe work of Shahed Bassam Almobydeen was partially funded by European Union under the Erasmus Mundus Peace II mobility program. The work of José R.R. Viqueira was partially funded by Xunta de Galicia, Spain under the Project ED431B 2021/16, by the TRAFAIR EU project 2017-EU-IA-0167, co-financed by the Connecting Europe Facility, by the EU RADAR-ON-RAIA project (0461_RADAR_ON_RAIA_1_E), co-financed by the European Regional Development Fund (ERDF) through the Iterreg V-A Spain-Portugal program (POCTEP) 2014–2020 and by project MAGIST-ELA PID2019-105221RB-C42, funded by Spanish Ministry of Economy and Competitiveness, Spain. The work of Manuel Lama was partially funded by the Spanish Ministry for Science, Innovation and Universities under the project TIN2017-84796-C2-1-RS
    corecore